
 Pearson

Mark Scheme (Unused)

January 2022

Pearson Edexcel International A Level
In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P71859A
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A 1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
1 (a)	Number the 1200 students ($1-1200$)		B1
	Use a random starting point between 1 and 20		B1
	Select every $20^{\text {th }}$ person on the list		B1
			(3)
(b)(i)	They only need to generate one random number		B1
			(1)
(b)(ii)	It is not random as the list is ordered alphabetically or not all combinations of sampling units are possible		M1
	e.g. unlikely siblings would be selected		A1
			(2)
(c)	$\text { Number of Y9 students }=\frac{200}{1200} \times 60[=10]$		M1
	The stratified sample gives a better proportion or is more representative oe		A1
			(2)
		Notes	Total 8
1 (a)	B1	numbering the students (Allow $0-1199$).	
	B1	using a random starting point. Must be between 1 and 20 (Allow 0-19).	
	B1	selecting every $20^{\text {th }}$ person.	
(b)(i)	B1	a suitable comment.	
(b)(ii)	M1	a suitable comment.	
	A1	a suitable example.	
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$	
	A1	a correct explanation.	

Question Number	Scheme						Marks
4	H_{0} : There is no association between type of property and the time taken to sell it H_{1} : There is an association between type of property and the time taken to sell it						B1
	Expected		Bungalow	Flat	House	Total	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Within 3 months		10.496	31.488	40.016	(82)	
	More than 3 months		5.504	16.512	20.984	(43)	
	Total		(16)	(48)	(61)	(125)	
	Observed		Expected	$(O-E)^{2}$		$\frac{O^{2}}{E}$	
		7	10.496			4.6684...	
		29	31.488			26.7085...	
		46	40.016			52.8788...	
		9	5.504			14.7165...	
		19	16.512			21.8628...	
		15	20.984			10.7224...	
						131.557...	
	$\left[\mathrm{X}^{2}=\right.$	$\frac{(O-E)^{2}}{E}$ or	$\frac{O^{2}}{E}-125$				dM1
		57...				awrt 6.56	A1
	$v=(2$	$)(3-1)=2$					B1
	$\mathrm{C}_{2}^{2}(0.0$	$=5.991 \Rightarrow$ CR:	X^{2}...5.991				B1
	[in the associ	/significant/R on between typ	ect H_{0}] Ther of property	ufficient he time	ce to sug sell it.	that there is an	A1
							(10)
				otes			Total 10
4	B1	Both hypothes (may be written	correct. Must in terms of ind	on "type dence)	rty" and	e taken" at least on	
	M1	Some attempt	$\frac{(\text { Row Total)(C) }}{\text { (Grand }}$	$\mathrm{nn} \text { Total) }$)	implied	least one correct	to 1 dp
	A1	All expected fr	uencies correc				
	dM1	Dependent on with their E_{i}	M1 for at leas cept 2 sf accur	rrect tern	$\frac{\partial-E)^{2}}{E}$	or correct expr	sions
	A1	At least 3 corre	$\frac{(O-E)^{2}}{E} \text { or }$	terms to	etter. Allo	uncated answers.	
	dM1	Dependent on	M1 For apply	ither	$E)^{2} \text { or }$	-125	
	A1	awrt 6.56					
	B1	$v=2$ This ma	can be implied	correct	alue of 5.		
	B1	5.991					
	A1	Dependent on Must mention H_{0} ". Condone	$3^{\text {rd }}$ M1 and 3 pe and time. elationship" or	A correc dictory nection'		asion which is reje g. "significant, do ion".	ting H_{0} not reject

Question Number	Scheme					Marks
5 (a)(i)	[$\bar{x}=\frac{3}{}$	0 \Rightarrow	$\bar{x}=72.2$	$s_{x}{ }^{2}=\frac{260955.6-50(72.2)}{50-1}$		B1; M1 A1
5(a)(ii)	$\left[\bar{y}=\frac{2585}{50} \Rightarrow\right.$		$\bar{y}=51.7$	$s_{y}{ }^{2}=\frac{133757.2-50(51.7)}{50-1}$		B1 A1
						(5)
(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{x}-\mu_{y}=20 \\ & \mathrm{H}_{1}: \mu_{x}-\mu_{y}>20 \end{aligned}$					B1
	$z=\frac{' 72.2^{\prime}-'^{\prime} 51.7^{\prime}-20}{\sqrt{\frac{6.4^{\prime}}{50}+\frac{2.3^{\prime}}{50}}}$					M1 M1
	= 1.1986...				awrt 1.20	A1
	One tailed c.v. $Z=1.6449$ or CR: $Z \ldots 1.6449$					B1
	Not in CR/Not significant/Do not reject H_{0}					M1
	No significant evidence to support Tammy's belief					A1
						(7)
(c)	Since the sample is large the CLT applies.					M1
	No need to assume (the weights) are normally distributed.					A1
						(2)
(d)	Assumed that $s^{2}=\sigma^{2}$					B1
						(1)
	Notes					Total 15
5 (a)(i)	B1	$\bar{x}=72.2$				
	M1	A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^{2}-n(\bar{x})^{2}}{n-1}$ (May be seen in (i) or (ii))				
	A1	6.4				
5(a)(ii)	B1	$\bar{y}=51.7$				
	A1	2.3				
(b)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ				
	M1	For correct standard error. Follow through their values from (a)				
	M1	An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm				
	A1	awrt 1.20 Allow 1.2 if no incorrect working shown				
	B1	1.6449 or better (seen)				
	M1	A correct statement - need not be contextual but do not allow contradicting non contextual comments.				
	A1	A correct contextual statement. Allow the difference in mean weights is not greater than 20 kg				
(c)	M1	A suitable comment that mentions large and CLT				
	A1	A correct answer, context not required.				
(d)	B1	for the assumption that sample variance = population variance				

Question Number	Scheme			Marks
7 (a)	Let X represent $B_{1}+B_{2}-C_{1}$			
	$X \square \mathrm{~N}(0.268,0.015633)$ awrt 0.0156			M1 A1
	$\mathrm{P}(X<0)=\mathrm{P}\left(Z<\frac{0-0.268}{\sqrt{" 0.015633 "}}(=-2.14)\right)$			M1
	$(=1-0.9838)=0.0162$			A1
				(4)
(b)	Let Y represent $2.5 B_{1}+3 C_{1}+3 C_{2}$			
	$Y \square \mathrm{~N}(6.918,0.071478)$ awrt 6.92, 0.0715			M1 A1
	$\mathrm{P}(Y>7)=\mathrm{P}\left(Z>\frac{7-" 6.918 "}{\sqrt{" 0.071478 "}}(=0.31)\right)$			M1
	$(=1-0.6217)=0.3783$ (Calculator gives 0.3795 ..)		0.378-0.380	A1
				(4)
(c)	Mean $=2.94 w$			B1
	Standard deviation $=0.084 \sqrt{5} w \quad(=0.188 w)$			B1
				(2)
(d)	$\frac{6-2.94 w}{0.084 \sqrt{5} w},-1.2816$			M1;B1
	$-1.2816 \times 0.084 \sqrt{5} w+2.94 w \ldots 6$			dM1
	$w \ldots 2.22 \ldots$ So $w=2.23$			A1
				(4)
	Notes			Total 14
7 (a)	M1 \quad for setting up normal distribution with mean 0.268			
	A1	for a correct expression for variance ($=0.015633$) or for standard deviation ($=0.125 \ldots$)		
	M1	for standardising with $0,0.268$ and their standard deviation		
	A1	awrt 0.0162 (Allow awrt 0.0160 as this comes from a calculator)		
(b)	M1	for setting up normal distribution with mean awrt 6.92		
	A1	for a correct expression for variance ($=0.071478$) or for standard deviation ($=0.267 \ldots$)		
	M1	for standardising with 7, 0.071478 and their standard deviation		
	A1	for answer between $0.378-3.80$		
(c)	B1	for 2.94w		
	B1	for $0.084 \sqrt{5} w$ or awrt $0.188 w$		
(d)	M1	for standardising using their mean and their standard deviation $=z$ where $1<\|z\|<1.5$		
	B1	for -1.28		
	dM1	dependent on M1, for solving their inequality		
	A1	awrt (£)2.23		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

