

Mark Scheme (Unused)

January 2022

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P71859A

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks				
1 (a)	Number	the 1200 students (1 – 1200)	B1				
	Use a ra	B1					
	Select ev	very 20 th person on the list	B1				
			(3)				
(b)(i)	They on	ly need to generate one random number	B1				
			(1)				
(b)(ii)	It is not random as the list is ordered alphabetically or not all combinations of sampling units are possible						
		kely siblings would be selected	A1				
		<u>, </u>	(2)				
(c)	Number	M1					
	The strat	tified sample gives a better proportion or is more representative oe	A1				
			(2)				
		Notes	Total 8				
1 (a)	B 1	numbering the students (Allow $0 - 1199$).					
	B1	using a random starting point. Must be between 1 and 20 (Allow $0 - 19$).					
	B1	selecting every 20 th person.					
(b)(i)	B1	a suitable comment.					
(b)(ii)	M1	a suitable comment.					
	A1	a suitable example.					
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$					
	A1	a correct explanation.					

Question Number		Scheme	Marks						
2 (a)	Use of \bar{x}	Use of $\overline{x} \pm z \times \frac{1.9}{\sqrt{10}}$; $z = 1.96$							
	(52.54, 54.897) awrt 52.5 and 54.9								
(b)	Use of 1.	Use of $1.5 > 2 \times z \times \frac{1.9}{\sqrt{n}}$ oe ; $z = 2.5758$ (or better)							
	$1.5 > \frac{9.7}{3}$	$1.5 > \frac{9.78804}{\sqrt{n}}$							
	n > 42.5	n > 42.58 So $n = 43$							
			(4)						
		Notes	Total 8						
2 (a)	M1	for use of correct expression with 1.9, 10 and $1 < z < 3$							
	B1	for $z = 1.96$							
	A1	for awrt 52.5							
	A1	for awrt 54.9							
(b)	M1 for awrt 54.9 use of $z \times \frac{1.9}{\sqrt{n}}$ in a correct inequality with 0.75 or 1.5 and 2 < z < 3 (allow written as an								
		equation)							
	B1	for $z = 2.5758$ (or better)							
	dM1	dependent on 1 st M1, for solving a correct inequality for the width of the 99% CI (all equation rather than an inequality)	ow an						
	A1	cao							

Question Number	Scheme										Marks		
	Driver	A	В	C	D	E	F	G	H	I	J		
3 (a)	Rank FC	QL 1	5	3	2	6	4	8	9	10	7		M1
	FP	1	2	3	4	5	6	7	8	9	10		
	$\sum d^2 = 0 + 9 + 0 + 4 + 1 + 4 + 1 + 1 + 1 + 9 $ [=30]								M1				
	$r_s = 1 - \frac{6}{10}$	(30) 0(99)											dM1
	= 0.818	31818								a	awrt 0.8	818	A1
													(4)
(b)	$H_0: \rho = 0, \ H_1: \rho > 0$								B1				
	Critical Va	alue $r_s = 0.7$	7455 c	or CR:	r_s ().7455							B1
	Reject H ₀	or significa	nt or li	es in th	e critic	al regio	n						M1
	There is sufficient evidence of a positive correlation between fastest qualifying lap time and finishing position for these Formula One racing drivers									A1			
										(4)			
- 4 >	Notes Total 8 M1 attempt to rank fastest qualifying lap (at least four correct).										Total 8		
3 (a)	1				• •	-							
	M1	finding the d	lifferen	ce betwo	een eacl	n of the	ranks a	nd evalı	ating 2	$\sum d^2$			
	dM1 dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$												
		9											
(b)	B 1	both hypoth	eses con	rect. M	ust be in	terms	of $ ho$. N	Aust be	attached	d to H ₀ a	and H ₁		
_	B1	critical value	of 0.7	455									
	M1	A correct statement comparing their CV with their r - no context needed but do no									o no	allow	
		contradicting											
	A1	correct conc	lusion v	which is	rejectir	ng H ₀ , w	hich m	ust men	tion lap	time a	nd finis	hing	position.

Question Number			Scheme				Marks				
4	H_0 : There is no association between type of property and the time taken to sell it H_1 : There is an association between type of property and the time taken to sell it										
	Expect	ed	Bungalow	Flat	House	Total					
		3 months	10.496	31.488	40.016	(82)	M1				
		han 3 months	5.504	16.512	20.984	(43)	A1				
	Total		(16)	(48)	(61)	(125)					
	Ol	oserved	Expected	(O -		$\frac{O^2}{E}$					
		7	10.496	1.164	14	4.6684					
		29	31.488	0.196	55	26.7085	1M1				
		46	40.016	0.894	18	52.8788	dM1				
		9	5.504	2.220)5	14.7165	A1				
		19	16.512	0.374	18	21.8628					
		15	20.984	1.706	54	10.7224					
		<u> </u>	Tota	als 6.55	7	131.557					
	$X^2 = X^2$	$\sum \frac{(O-E)^2}{E} \text{or} $	$\sum \frac{O^2}{E} - 125$				dM1				
	= 6.3	= 6.557 awrt 6.56									
	v = (2-1)(3-1) = 2										
	$c_2^2(0.05) = 5.991 \Rightarrow CR: X^2 5.991$										
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that there is an association between type of property and the time taken to sell it.										
	Notes										
4	B1	Notes Both hypotheses correct. Must mention "type of property" and "time taken" at least one (may be written in terms of independence)									
	M1	Some attempt at $\frac{\text{(Row Total)(Column Total)}}{\text{(Grand Total)}}$ Can be implied by at least one correct E_i to 1dp									
	A1	All expected frequencies correct									
	dM1	Dependent on 1 st M1 for at least 2 correct terms for $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct expressions									
		with their E_i Accept 2 sf accuracy.									
	A1	At least 3 correct $\frac{(O-E)^2}{F}$ or $\frac{O^2}{F}$ terms to 2dp or better. Allow truncated answers.									
	dM1	Dependent on 2 nd M1 For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$									
	A1	awrt 6.56		-	-						
	B1	v = 2 This mark can be implied by a correct critical value of 5.991									
	B1	5.991									
		Dependent on the	$10^{10} M1$ and $3^{10} M1$	B1. A correct co	ntextualised con	nclusion which is reject	cting H ₀				
	A1	•	y pe and time. Con relationship" or "	•		e.g. "significant, do lation".	not reject				

Question Number		Scheme	Marks
5 (a)(i)		$\frac{10}{0} \Rightarrow \overline{x} = 72.2 \qquad s_x^2 = \frac{260955.6 - 50(72.2)^2}{50 - 1} = 6.4$ $\frac{85}{0} \Rightarrow \overline{y} = 51.7 \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$	B1; M1 A1
5(a)(ii)	$ \overline{y} = \frac{253}{50} $	$\left[\frac{85}{0}\right] \Rightarrow \left[\overline{y} = 51.7\right] \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$	B1 A1
			(5)
(b)	$H_0: \mu_x - H_1: \mu_x - H_2$,	B1
		•	
	$z = \frac{72.2}{5}$	$\frac{2'-'51.7'-20}{\frac{6.4'}{50}+\frac{'2.3'}{50}}$	3.61.3.61
	1	$\frac{6.4'}{50} + \frac{12.3'}{50}$	M1 M1
	•		A 1
	=1.198		A1
		zd c.v. $Z = 1.6449$ or CR: $Z 1.6449$	B1
		R/Not significant/Do not reject H ₀	M1
	No signit	ficant evidence to support Tammy's belief	A1
()	a: 1		(7)
(c)		e sample is large the CLT applies.	M1
	No need	to assume (the weights) are normally distributed.	A1 (2)
(1)	A :	1.1 . 2 2	(2)
(d)	Assumed	I that $s^2 = \sigma^2$	B1 (1)
		Notes	(1) Total 15
5 (a)(i)	B1	$\overline{x} = 72.2$	1000110
- ()()		A correct method for finding an unbiased estimate of the variance e.g. $\sum x^2 - n(\overline{x})$	2
		A correct method for finding on unbigged estimate of the veriance of the veriance of	
	M1	A correct method for finding an unbrased estimate of the variance e.g. $\frac{n-1}{n-1}$	
	M1	n-1	
		(May be seen in (i) or (ii)) $n-1$	
5(a)(ii)	A1	n-1	
5(a)(ii)		(May be seen in (i) or (ii)) 6.4	
5(a)(ii) (b)	A1 B1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$	
	A1 B1 A1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3	
	A1 B1 A1 B1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	
	A1 B1 A1 B1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	
	A1 B1 A1 B1 M1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	
	A1 B1 A1 B1 M1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	
	A1 B1 A1 B1 M1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen)	
	A1 B1 A1 B1 M1 M1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown	
	A1 B1 A1 B1 M1 M1 A1 B1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non concomments. A correct contextual statement. Allow the difference in mean weights is not gr	ntextual
(b)	A1 B1 A1 B1 M1 M1 A1 B1 A1 A1 A1 A1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a,b,c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non concomments. A correct contextual statement. Allow the difference in mean weights is not gr 20 kg	ntextual
	A1 B1 A1 B1 M1 M1 A1 B1 M1	(May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non concomments. A correct contextual statement. Allow the difference in mean weights is not gr	ntextual

Number 6 (a) (b)	0×1+1×	10+2>	$\times 23 + 3 \times 15 + 4 \times$		Scheme								
			$\frac{0 \times 1 + 1 \times 10 + 2 \times 23 + 3 \times 15 + 4 \times 19 + 5 \times 9 + 6 \times 3}{0 \times 1 + 1 \times 10 + 2 \times 23 + 3 \times 15 + 4 \times 19 + 5 \times 9 + 6 \times 3} = 3 *$										
(b)			$\frac{80}{80}$ = 3 *										
(b)													
	$r = e^{-3} \times 80 = 3.983$ $s = \frac{e^{-3} \times 3^{5}}{5!} \times 80$;= 8.066												
	t = 80 - (r + 11.949 + 17.923 + 17.923 + 13.443 + s); = 6.713												
(c)	•			asonable/suitable			B1						
_				a /reasonable/sui	-								
	Numb		Combined	Combined	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$							
	ema	ils	Observed	Expected									
	<	1	11	15.932	1.5267	7.5947							
	2		23	17.923	1.4381	29.5151							
	3		15	17.923	0.4767	12.5537	M1						
	4		19	13.443	2.2971	26.8541							
	5		9	8.065	0.1083	10.0433							
	≥ (6	3	6.714	2.0544	1.3404							
	Totals 7.901 87.901												
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 80$												
	= 7.901 awrt 7.90												
	v = 6 - 1 - 1 = 4												
	$c_4^2(0.10) = 7.779 \implies CR: X^2 \dots 7.779$												
	[since $X^2 = 7.90$ does lie in CR, then there is sufficient evidence to reject H_0]												
	Sufficient evidence to say that Poisson is not a reasonable model												
				Notes			Total 12						
6 (a)	B1	For a c	orrect method to s	hown that the mea	n is 3								
(b)	M1	Use of	$\frac{\mathrm{e}^{-\lambda} \times \lambda^r}{r!} \times 80$ or	May be implied	by a correct answ	wer for either <i>r</i> or <i>s</i>							
	A1	r = 3.9	983 and s = 8.00	66 (allow $r = 3.9$	0.84 and s = 8.06	4 as these come from ta	bles)						
	M1			sures that expected			,						
	A1	t = 6.7	713 (allow t = 6.7)	714 if tables used)								
(c)	B1	Both h	ypotheses correct.	Must mention Poi	sson at least once								
	M1	Combi	ning 0 emails and	1 email. Must have	e both observed a	nd expected frequencies							
	M1		•	·	•	values (to awrt 2dp)							
	A1			o incorrect workin		2===							
	B1		This mark can be	implied by a correc	ct critical value of	£7.7 79							
	B1	7.779											
	A1	A corre	ect conclusion bas	ed on their X^2 val	lue and their χ^2	eritical value							

Question Number		Scheme	Marks					
7 (a)	Let X rep	present $B_1 + B_2 - C_1$						
	$X \square N(0)$	0.268, 0.015633) awrt 0.0156	M1 A1					
	P(X<0)	$ = P \left(Z < \frac{0 - 0.268}{\sqrt{0.015633}} (= -2.14) \right) $	M1					
		(=1-0.9838)=0.0162	A1					
			(4)					
(b)	Let <i>Y</i> represent $2.5B_1 + 3C_1 + 3C_2$							
	<i>Y</i> □ N(6	.918,0.071478) awrt 6.92, 0.0715	M1 A1					
	P(Y > 7)	$P = P \left(Z > \frac{7 - "6.918"}{\sqrt{"0.071478"}} (= 0.31) \right)$	M1					
		(=1-0.6217) = 0.3783 (Calculator gives 0.3795) $0.378-0.380$	A1					
			(4)					
(c)	Mean = 2.94w							
	Standard deviation = $0.084\sqrt{5} w$ (= $0.188w$)							
			(2)					
(d)	$\frac{6-2.94w}{0.084\sqrt{5}w}$, -1.2816							
	$-1.2816 \times 0.084\sqrt{5} \ w + 2.94w \dots 6$							
	$w \dots 2.22\dots$ So $w = 2.23$							
	,,		A1 (4)					
		Notes	Total 14					
7 (a)	M1	for setting up normal distribution with mean 0.268						
	A1	for a correct expression for variance (= 0.015633) or for standard deviation (= 0.125 .)					
	M1 for standardising with 0, 0.268 and their standard deviation							
	A1	6 1						
(b)	M1 for setting up normal distribution with mean awrt 6.92							
	A1 for a correct expression for variance (= 0.071478) or for standard deviation (= 0.267)							
	M1	for standardising with 7, 0.071478 and their standard deviation						
()	A1	for answer between $0.378 - 3.80$						
(c)	B1	for 2.94w						
	B1	for $0.084\sqrt{5}w$ or awrt $0.188w$						
(d)	M1	M1 for standardising using their mean and their standard deviation = z where $1 < z < 1.5$						
	B1	for -1.28						
	dM1	dependent on M1, for solving their inequality						
	A1	awrt (£)2.23						

